Sitio de Matematicas

Just another WordPress.com weblog

Qué son los Cuerpos Geométricos?

Corresponde a una figura geométrica tridimensional, es decir, que se proyecta en tres dimensiones: largo, ancho y alto. Debido a esta característica existen en el espacio pero se hallan limitados por una o varias superficies.

Si todas las superficies que lo limitan son planas y de contorno poligonal, el cuerpo es un poliedro.

Los poliedros se clasifican en regulares e irregulares.

Poliedros regulares, son aquellos cuyas caras son todas polígonos regulares, congruentes entre sí (de igual medida) y cuyos ángulos poliedros son iguales. Existen solamente 5 poliedros regulares: Tetraedro, Hexaedro, Octaedro, Dodecaedro,Icosaedro.

Para los geómetras griegos, el estudio de los poliedros fue muy importante y conocieron la existencia de esos cinco únicos sólidos regulares, cuyo descubrimiento atribuyeron algunos al propio Pitágoras y a los que Platón recurrió incluso para explicar la creación del universo. Sin embargo, no consta que conocieran un importante resultado relativo al número de vértices, aristas y caras de un poliedro convexo, observado ya por Descartes en 1640 y del que el matemático suizo Leonhard Euler dio una famosa demostración en 1752. Euler demostró que, si se suma el número de caras y el número de vértices de un poliedro convexo y, del valor obtenido, se resta entonces el número de aristas, et resultado es siempre igual a 2. De este resultado, válido para todo poliedro convexo, se deduce fácilmente la existencia de únicamente cinco poliedros regulares.

About these ads

mayo 4, 2008 - Posted by | Conceptos

Aún no hay comentarios.

Deja un comentario

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

Seguir

Recibe cada nueva publicación en tu buzón de correo electrónico.

%d personas les gusta esto: